Module 3a: Flow in Closed Conduits

Continuity, Momentum, and Energy (Bernoulli)

Equation of Continuity

At any given location (assuming incompressible fluid):

$$
\begin{aligned}
\text { Flow In } & =\text { Flow Out } \\
\mathrm{Q}_{\text {in }} & =\mathrm{Q}_{\text {out }}
\end{aligned}
$$

Since Q = (Velocity)(Cross-Sectional Area of Flow) = VA
Where $\mathrm{V}=$ average (mean) velocity across the profile.
$(\mathrm{VA})_{\text {in }}=(\mathrm{VA})_{\text {out }}$

Continuity Equation

Example:
Water flows in a $10-\mathrm{cm}$ diameter pipe at a mean velocity of $1.5 \mathrm{~m} / \mathrm{sec}$. What is the discharge rate of flow at a temperature of $5^{\circ} \mathrm{C}$?

Using the continuity equation,
$\mathrm{Q}=\mathrm{VA}$
Substituting:

$$
\begin{aligned}
& Q=(1.5 \mathrm{~m} / \mathrm{sec})\left(\frac{\pi}{4}\right)(0.10 \mathrm{~m})^{2} \\
& Q=0.012 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

Continuity Equation

Example:

Water flows in a $10-\mathrm{cm}$ diameter pipe at a mean velocity of $1.5 \mathrm{~m} / \mathrm{sec}$. What is the discharge rate of flow at a temperature of $5^{\circ} \mathrm{C}$?
Had the example asked for the mass rate of flow, the mass rate of flow is equal to the flow Q multiplied by the density of the fluid at the temperature of interest.

$$
\begin{aligned}
& \text { Mass rate of flow }=\left(0.012 \mathrm{~m}^{3} / \mathrm{sec}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
& \text { Mass rate of flow }=12 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

Continuity Equation

Example:

Water is flowing in a 2-inch diameter pipe at a velocity of 16 $\mathrm{ft} / \mathrm{sec}$. The pipe expands to a 4 -inch diameter pipe. Find the velocity in the 4-inch diameter pipe.
By the Continuity Equation:

$$
\mathrm{V}_{1} \mathrm{~A}_{1}=\mathrm{V}_{2} \mathrm{~A}_{2}
$$

Continuity Equation

Example:

Find the cross-sectional area of flow at points 1 and 2 (assume that the pipe is flowing full).

$$
\begin{aligned}
& A_{1}=\frac{\pi D_{1} 2}{4}=\frac{\pi(2 \mathrm{in})(1 \mathrm{ft} / 12 \mathrm{in})^{2}}{4}=0.022 \mathrm{ft}^{2} \\
& A_{2}=\frac{\pi D_{2} 2}{4}=\frac{\pi(4 \mathrm{in})(1 \mathrm{ft} / 12 \mathrm{in})^{2}}{4}=0.086 \mathrm{ft}^{2}
\end{aligned}
$$

Substituting:

$$
\begin{aligned}
& V_{1} A_{1}=V_{2} A_{2} \\
& (16 \mathrm{ft} / \mathrm{sec})\left(0.022 \mathrm{ft}^{2}\right)=V_{2}\left(0.086 \mathrm{ft}^{2}\right) \\
& V_{2}=4.09 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Momentum Equation

- This is a vector relationship, i.e., the force equation may act in more than one direction (x -component, y -component, and possible z-component).
- The Law of Conservation of Momentum:

The time rate of change in momentum (defined as the mass rate of flow $\rho A V$ multiplied by the velocity V) along the path of flow will result in a force called the impulse force.

- Net force on a fluid caused by the change in momentum:

$$
\mathrm{F}=\mathrm{M}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=\rho \mathrm{Q}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

Where $\mathrm{F}=$ net force
$M=$ mass flow rate $=\rho Q$
$\mathrm{V}=$ velocity
$\mathrm{Q}=$ flow rate
$\rho=$ density

Momentum Equation

Example:

Determine the force exerted by the nozzle on the pipe shown when the flow rate is $0.01 \mathrm{~m}^{3} / \mathrm{sec}$. Neglect all losses.

Assume the fluid is water. Need to find velocities using continuity equation. Need cross-sectional area of flow for continuity equation.

Momentum Equation

Solution:

Area at point 1:

$$
A_{1}=\frac{\pi D_{1}^{2}}{4}=\frac{\pi(0.1 \mathrm{~m})^{2}}{4}=0.007854 \mathrm{~m}^{2}
$$

Area at point 2:

$$
A_{2}=\frac{\pi D_{2}^{2}}{4}=\frac{\pi(0.025 \mathrm{~m})^{2}}{4}=0.000491 \mathrm{~m}^{2}
$$

Momentum Equation

Solution:
Calculating the net force caused by a change in momentum:

$$
\begin{aligned}
& F=\rho Q\left(V_{2}-V_{1}\right) \\
& F=\left(998.2 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(0.01 \mathrm{~m}^{3} / \mathrm{sec}\right)(20.37-1.273 \mathrm{~m} / \mathrm{sec}) \\
& F=190.6 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}^{2}=190.6 \mathrm{~N}
\end{aligned}
$$

After looking at significant figures: $\mathrm{F}=190 \mathrm{~N}$

Momentum Equation

Solution:

Velocity at point 1 :

$$
\begin{aligned}
& Q_{1}=Q=A_{1} V_{1}=0.01 \mathrm{~m}^{3} / \mathrm{sec}=\left(0.007854 \mathrm{~m}^{2}\right) V_{1} \\
& V_{1}=1.273 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Velocity at point 2:

$$
\begin{aligned}
& V_{2}=\frac{Q}{A_{2}}=\frac{0.01 \mathrm{~m}^{3} / \mathrm{sec}}{0.000491 \mathrm{~m}^{2}} \\
& V_{2}=20.37 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Momentum Equation

- Momentum equation usually applied to determining forces on a pipe in a bend.

From: Metcalf \& Eddy, Inc. and George Tchobanoglous. Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981.

Momentum Equation

Equation for the force in the x-direction:

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{p}_{2} \mathrm{~A}_{2} \cos \theta-\mathrm{p}_{1} \mathrm{~A}_{1}+\rho \mathrm{Q}\left(\mathrm{~V}_{2} \cos \theta-\mathrm{V}_{1}\right)
$$

Equation for the force in the y-direction:

$$
\mathrm{F}_{\mathrm{y}}=\mathrm{p}_{2} \mathrm{~A}_{2} \sin \theta+\rho \mathrm{QV}_{2} \sin \theta
$$

If the y-direction is vertical, the weight of the water and the pipe will need to be added to the right side of the F_{y} equation.

Momentum Equation

Example:

- Determine the magnitude and direction of the force needed to counteract the force resulting from the change in momentum in a horizontal 90° bend in a $200-\mathrm{mm}$ force main. The rate of flow through the force main is $0.1 \mathrm{~m}^{3} / \mathrm{sec}$.

Note: The $x-y$ plane is horizontal in this is horizontal in this gravitation forces on all sections of pipe.

Momentum Equation

Solution:

- By continuity, the flow rate does not change. Therefore, $\mathrm{Q}=$ $\mathrm{V}_{1} \mathrm{~A}_{1}=\mathrm{V}_{2} \mathrm{~A}_{2}$. The problem indicates that at both points 1 and 2, the diameter is 0.20 m .
Therefore, $A_{1}=A_{2}$, and by continuity $V_{1}=V_{2}$.
Also given: $\mathrm{D}=0.20 \mathrm{~m}$
$\begin{aligned} & \theta=90^{\circ} \\ & \text { Looking up: } \quad \rho=998.2 \mathrm{~kg} / \mathrm{m}^{3} \quad \text { at } 20^{\circ} \mathrm{C} \text { (assume T) } \\ & \gamma=9789 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{sec}^{2} \quad \text { at } 20^{\circ} \mathrm{C}\end{aligned}$

Momentum Equation

Find the cross-sectional area of flow:

$$
\begin{aligned}
& A=\left(\frac{\pi}{4}\right) D^{2}=\left(\frac{\pi}{4}\right)(0.20 \mathrm{~m})^{2} \\
& A=0.0314 m^{2}
\end{aligned}
$$

Find the velocity of flow:

$$
\begin{aligned}
& V=\frac{Q}{A}=\frac{0.10 \mathrm{~m}^{3} / \mathrm{sec}}{0.0314 \mathrm{~m}^{2}} \\
& V=3.18 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Momentum Equation

Find the pressure (convert velocity into an energy head term which equals the pressure head term):

By Bernoulli's equation:

$$
\begin{aligned}
& \frac{p_{1}}{\gamma}=\frac{v_{1}^{2}}{2 g} \\
& \text { Substituting : }
\end{aligned}
$$

$$
\begin{gathered}
\frac{p_{1}}{9789 \mathrm{~kg} / \mathrm{m}^{2}-\mathrm{sec}^{2}}=\frac{(3.18 \mathrm{~m} / \mathrm{sec})^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{sec}^{2}\right)} \\
\mathrm{p}_{1}=5045.4 \mathrm{~kg} / \mathrm{m}-\mathrm{sec}^{2}=5045 \mathrm{~Pa}
\end{gathered}
$$

Momentum Equation

Since the pressure in the system is based only on a velocity component at both points 1 and $2, \mathrm{p}_{1}=\mathrm{p}_{2}$. Since $V_{1}=V_{2}$ and $A_{1}=A_{2}$ by continuity (and same diameter pipe on both sides of the bend) and since p_{1} $=\mathrm{p}_{2}$, simplify the force equations:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=\mathrm{pA} \cos \theta-\mathrm{pA}+\rho \mathrm{Q}(\mathrm{~V} \cos \theta-\mathrm{V}) \\
& \mathrm{F}_{\mathrm{x}}=\mathrm{pA}(\cos \theta-1)+\rho \mathrm{QV}(\cos \theta-1) \\
& \mathrm{F}_{\mathrm{x}}=(\mathrm{pA}+\rho \mathrm{QV})(\cos \theta-1) \\
& \mathrm{F}_{\mathrm{y}}=\mathrm{pA} \sin \theta+\rho \mathrm{QV} \sin \theta \\
& \mathrm{~F}_{\mathrm{y}}=(\mathrm{pA}+\rho \mathrm{QV}) \sin \theta
\end{aligned}
$$

Momentum Equation

Substituting:

$(p A+\rho Q V)=\left[\left(504.5 \mathrm{~kg} / \mathrm{m}-\mathrm{sec}^{2}\right)\left(0.0314 \mathrm{~m}^{2}\right)+\left(998.2 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.10 \mathrm{~m} 3 / \mathrm{sec})(3.18 \mathrm{~m} / \mathrm{sec})\right]$ $(p A+\rho Q V)=475.8 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}^{2}=475.8 \mathrm{~N}$
$\cos \theta=\cos \left(90^{\circ}\right)=0$
$\sin \theta=\sin \left(90^{\circ}\right)=1$

$$
\begin{aligned}
& F_{x}=(475.8 \mathrm{~N})(0-1) \\
& F_{x}=-475.8 \mathrm{~N} \\
& F_{y}=(475.8 \mathrm{~N})(1) \\
& F_{y}=475.8 \mathrm{~N}
\end{aligned}
$$

Therefore, a thrust block capable of resisting 480 N (sig figs) must be placed against the pipe in both the x-direction and the y-direction and pipe hangers or appropriate bedding will be required to support the pipe from downward gravitational forces.

Bernoulli's Equation (aka Energy Equation)

For Fluid Flow Between Two Points (in a pipe or channel):

$$
\frac{P_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{f_{1-2}}
$$

Where $\mathrm{P} / \gamma=$ pressure head

$\mathrm{V}^{2} / 2 \mathrm{~g}=$ velocity head
$\mathrm{z}=$ static head
$\mathrm{h}_{\mathrm{fl}_{1-2}}=$ head loss between two points(usually resulting from shear stress along walls of pipe, within fluid, and from momentum changes at entrances, exits, changes in cross-section or direction, and fittings) - also abbreviated H_{L} or h_{L}.

Friction Slope = rate at which energy is lost along length of flow (channel or pipe)

Bernoulli's (Energy) Equation

Figure 1-4: The Energy Principle
Hydraulic Grade = pressure head + elevation head Energy Grade = hydraulic grade + velocity head

Bernoulli's Equation

From: Terence McGhee. Water Supply and Sewerage, Sixth Edition. McGraw-Hill, Inc., New York, NY. 1991.

Comparison of Bernoulli's Equation for Pipe Flow vs. Open-Channel Flow

From: Metcalf \& Eddy, Inc. and George Tchobanoglous. Wastewater Engineering: Collection and Pumping of Wastewater. McGraw-Hill, Inc. 1981.

Bernoulli's Equation

Example:

- Water is flowing through a 2 -inch pipe at a velocity of $16 \mathrm{ft} / \mathrm{sec}$. The pipe expands to a 4-inch pipe. Given that the pressure in the 2 -inch pipe is 40 psig. What is the pressure in the 4 -inch pipe just after expansion, assuming that friction is negligible?
Given:
$\mathrm{V}_{1}=16 \mathrm{ft} / \mathrm{sec}$
$\mathrm{g}=32.2 \mathrm{ft} / \mathrm{sec}^{2}$
$\gamma=62.4 \mathrm{lbf} / \mathrm{ft}^{3}$

Solving the Continuity Equation earlier, $\mathrm{V}_{2}=4.1 \mathrm{ft} / \mathrm{sec}$

Bernoulli's Equation

Example:

Since the centerline does not change elevation $\mathrm{z}_{1}=\mathrm{z}_{2}$, and z 's cancel out.
Since friction is negligible, $\mathrm{h}_{\mathrm{f}_{1-2}}$ is negligible (set equal to zero). Substituting:

$$
\begin{gathered}
\left.\frac{40 \mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}(12 \mathrm{in} / \mathrm{ft})^{2}}{62.4 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}}+\begin{array}{c}
3 \\
92.31 \mathrm{ft}+3.98 \mathrm{ft}
\end{array}=\left(2.31 \mathrm{in}^{2}-\mathrm{ft} / \mathrm{lb}_{\mathrm{f}}\right) \mathrm{P}_{2}+0.26 \mathrm{ft}\right)^{2} \\
2\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)
\end{gathered}=\frac{\mathrm{P}_{2}(12 \mathrm{in} / \mathrm{ft})^{2}}{62.4 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}}+\frac{(4.1 \mathrm{ft} / \mathrm{sec})^{2}}{2\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)} .
$$

Bernoulli’s Equation

Example:

What is the pressure at a depth of 300 feet in fresh water?
Elevation (Depth) Head = 300 feet
From Bernoulli's Equation, look at pressure term (all energy is the potential to do work as expressed by the pressure head term):

Pressure Head = P/ γ
For water, $\gamma=62.4 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{3}$
Substituting:

$$
\begin{aligned}
& 300 f t=\frac{P}{62.4 l b_{f} / f t^{3}} \\
& P=\left(18720 l b_{f} /{f t^{2}}^{2}\right)\left(1 \mathrm{ft}^{2} / 144 \mathrm{in}^{2}\right) \\
& P=130 l b_{f} / \mathrm{in}^{2}=130 \mathrm{psi}
\end{aligned}
$$

Bernoulli's Equation

Example:
What is the theoretical velocity generated by a 10 -foot hydraulic head?

From Bernoulli's Equation, look at velocity term (expresses kinetic energy in system):
Velocity Head = V²/2g $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{sec}^{2}$
Substituting:

$$
\begin{aligned}
& 10 f t=\frac{V^{2}}{2\left(32.2 f t / \mathrm{sec}^{2}\right)} \\
& V^{2}=10 \mathrm{ft}(2)\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)=644 \mathrm{ft}^{2} / \mathrm{sec}^{2} \\
& V=25.4 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Bernoulli's Equation including Pumps in the System

$$
\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}+E_{\text {pump }}=\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{f_{1-2}}
$$

where $\mathrm{E}_{\text {pump }}=$ net energy supplied by the pump (expressed as a head) and includes head losses within the pump

Bernoulli's Equation

- Example:

A 1200-mm diameter transmission pipe carries $126 \mathrm{~L} / \mathrm{sec}$ from an elevated storage tank with a water surface elevation of 540 m . Two kilometers from the tank, at an elevation of 434 m , a pressure meter reads 586 kPa . If there are no pumps between the tank and meter location, what is the rate of head loss in the pipe? (Note: $1 \mathrm{kPa}=1000$ $\mathrm{N} / \mathrm{m}^{2}$).

Bernoulli’s Equation

- Solution:
- Assume: velocity in tank is negligible (valid since the rate of water drawdown at any time is slow compared to the volume of the tank).
- Assume: pressure head in tank is zero since it is likely open to the atmosphere and the reading on the pressure meter is gauge pressure not absolute pressure.
- Have pipe diameter and flow rate, so can calculate velocity.

$$
\begin{aligned}
Q & =126 L / \sec \left(1 \mathrm{~m}^{3} / 1000 L\right)=0.126 \mathrm{~m}^{3} / \mathrm{sec} \\
A & =\frac{\pi}{4} D^{2}=\frac{\pi}{4}(1.2 \mathrm{~m})^{2}=1.13 \mathrm{~m}^{2} \\
V & =\frac{Q}{A}=\frac{0.126 \mathrm{~m}^{3} / \mathrm{sec}}{1.13 \mathrm{~m}^{2}}=0.11 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Bernoulli's Equation

- Solution:
- Check velocity head in pipe.

$$
\frac{V^{2}}{2 g}=\frac{0.11 \mathrm{~m} / \mathrm{sec}}{2\left(9.81 \mathrm{~m} / \mathrm{sec}^{2}\right)}=0.0006 \mathrm{~m}
$$

- Substitute into energy equation.
$\frac{P_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{f_{1-2}}$
$0 m+0 m+540 m=\frac{586,000 \mathrm{~N} / \mathrm{m}^{2}}{9,810 \mathrm{~N} / \mathrm{m}^{3}}+0 m+434 m+h_{f}$
$h_{f}=H_{L}=46.27 \mathrm{~m}$
Friction Slope $=46.27 \mathrm{~m} / 2000 \mathrm{~m} \approx 2.3 \%$

